5-4 Videos Guide

5-4a

Theorem (statement and partial proof):

- Green's Theorem (essentially the Fundamental Theorem of Calculus for double integrals): For a region D in \mathbb{R}^{2} bounded by a positively oriented, simple, closed curve C and a vector field $\mathbf{F}(x, y)=P(x, y) \mathbf{i}+Q(x, y) \mathbf{j}$, if P and Q have continuous partial derivatives on an open region containing D, then
$\int_{C} \mathbf{F} \cdot d \mathbf{r}=\oint_{C} P d x+Q d y=\int_{\partial D} P d x+Q d y=\iint_{D}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d A$

5-4b

- Notation: $C=\partial D$ is the simple, positively oriented boundary curve of D. The symbol \oint_{C} is used to indicate positive orientation.

Exercises:

- Evaluate the line integral by two methods: (a) directly and (b) using Green's Theorem.
- $\oint_{C} y d x-x d y, C$ is the circle with center the origin and radius 4

5-4c

- $\oint_{C} x^{2} y^{2} d x+x y d y, C$ consists of the arc of the parabola $y=x^{2}$ from $(0,0)$ to $(1,1)$ and the line segments from $(1,1)$ to $(0,1)$ and from $(0,1)$ to $(0,0)$

5-4d

- Use Green's Theorem to evaluate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$. (Check the orientation of the curve before applying the theorem.)
$\mathbf{F}(x, y)=\left\langle e^{-x}+y^{2}, e^{-y}+x^{2}\right\rangle, C$ consists of the arc of the curve $y=\cos x$ from $(-\pi / 2,0)$ to $(\pi / 2,0)$ and the line segment from $(\pi / 2,0)$ to $(-\pi / 2,0)$
- Green's Theorem and regions with holes

